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Symbols and Abbreviations

A coe�cient matrix

AT�
atomic weight

B [ ] Boltzmann di�erential operator

C3H10T1/2 mouse embryo cell culture

E�
i ; Ei;E;E 0 energy, MeV

fdjk;� direct knockout redistribution, MeV�1

fe
jk;�

evaporation spectral redistribution, MeV�1

fel
jk;�

elastic spectral redistribution, MeV�1

Hij;Kij integral operators

HETC High Energy Transport Code

HZETRN High Charge and Energy Transport Code

h step size for numerical integration

I
(k)
e l ; I

(k)
e ; I

(k)
d

integral operators

Is;i ; Ir ;i ; �i integrals from Ei to Ei+1 of terms on right-hand side of
Boltzmann equation

LAHET Los Alamos High Energy Transport Code

MCNP Monte Carlo N-Particle Transport Code

MCNPX LAHET/MCNP Code merger

Sj (E) stopping power jth particle

SPE solar particle event

xj; yj ; x depth of penetration of neutron radiation, g/cm2

y = colf�0; �1; : : : ; �N�1g column vector of �i terms

i; mij; �i parameter values

� scattering angle

�1; �2 ; �
0
1; �

0
2 mean value fractions

� = colf�0 ; �1 ; : : : ; �N�1g column vector of source terms

�� number density of � type atoms per unit mass, g particles

�j(E) total macroscopic cross section per unit mass, cm2/g

�jk(E;E 0) macroscopic di�erential cross section for particle k with energy

E 0 producing particle j with energy E , cm2/g-MeV particles

�s;� ; �r;� scattering terms, cm2/g-MeV

�� microscopic cross section, cm2

� average macroscopic cross section, cm2/g

�i integral of uence for ith energy group, neutrons/cm2

�e; �; �j(E) particle uence, particles/cm2-MeV

iii



Abstract

A neutron transport algorithm including both elastic and nonelas-

tic particle interaction processes for use in space radiation protection
for arbitrary shield material is developed. The algorithm is based
upon a multiple energy grouping and analysis of the straight-ahead

Boltzmann equation by using a mean value theorem for integrals.
The algorithm is then coupled to the Langley HZETRN code through
a bidirectional neutron evaporation source term. Evaluation of the
neutron uence generated by the solar particle event of February 23,

1956, for an aluminum-water shield-target con�guration is then com-
pared with MCNPX and LAHET Monte Carlo calculations for the
same shield-target con�guration. With the Monte Carlo calculation
as a benchmark, the algorithm developed in this paper showed a great

improvement in results over the unmodi�ed HZETRN solution. In
addition, a high-energy bidirectional neutron source based on a for-
mula by Ranft showed even further improvement of the uence re-

sults over previous results near the front of the water target where
di�usion out the front surface is important. E�ects of improved in-
teraction cross sections are modest compared with the addition of the
high-energy bidirectional source terms.

Introduction

This paper presents an improved algorithm for the analysis of the transport of secondary neu-
trons arising in space radiation protection studies. The design and simulation of the operational
processes in space radiation shielding and protection require highly e�cient computational pro-
cedures to adequately characterize time-dependent environments and time-dependent geometric
factors and to address shield evaluation issues in a multidisciplinary integrated engineering design
environment. One example is the recent study of the biological response in exposures to space
solar particle events (SPE's) in which the changing quality of the radiation �elds at speci�c tissue
sites are followed over 50 hours of satellite data to evaluate time-dependent factors in biological
response of the hematopoietic system (ref. 1). Similarly, the study of cellular repair dependent
e�ects on the neoplastic cell transformation of a C3H10T1

2 mouse embryo cell culture popula-
tion in low Earth orbit, where trapped radiations and galactic cosmic rays vary continuously in
intensity and spectral content about the orbital path (ref. 2), requires computationally e�cient
codes to simulate time-dependent boundary conditions around the orbital path. But even in
a steady-state environment which is homogeneous and isotropic, the radiation �elds within a
spacecraft have large spatial gradients and highly anisotropic factors so that the mapping of
the radiation �elds within the astronaut's tissues depends on the astronaut timeline of location
and orientation within the spacecraft interior where large di�erences in exposure patterns that
depend on the activity of the astronaut have been found (ref. 3). Obvious cases exist where rapid
evaluation of exposure �elds of speci�c tissues is required to describe the e�ects of variations in
the time-dependent exterior environment or changing geometric arrangement. A recent study
of the time-dependent response factors for 50 hours of exposure to the SPE of August 4, 1972,
required 18 CPU hours on a VAX 4000/500 computer by using the nucleon{light ion section of
the deterministic high charge and energy transport code HZETRN (ref. 4). In comparison, it is
estimated that the related calculation with a standard Monte Carlo code such as HETC (ref. 5)
or LAHET (ref. 6), which are restricted to only neutrons, protons, pions, and alphas, would have
required approximately 2 years of computer time on a VAX 4000/500 computer. The spacecraft
design environment also requires rapid evaluation of the radiation �elds to adequately determine
e�ects of multiparameter design changes on system performance (refs. 7 and 8). These e�ects



are the driving factors in the development and use of deterministic codes and in particular the
HZETRN code system which simulates 56 naturally occurring atomic ions and neutrons.

The basic philosophy for the development of the deterministic HZETRN code began with the
study by Alsmiller et al. (ref. 5) using an early version of HETC, wherein they demonstrated
that the straight-ahead approximation for broad beam exposures was adequate for evaluation of
exposure quantities. Wilson and Khandelwal (ref. 9) examined the e�ects of beam divergence
on the estimation of exposure in arbitrary convex geometries and demonstrated that the errors
in the straight-ahead approximation are proportional to the square of the ratio of the beam
divergence (lateral spread) to the radius of curvature of the shield material. This ratio is small
in typical space applications. From a shielding perspective, the straight-ahead approximation
overestimates the transmitted ux and the error is found to be small in space radiation exposure
quantities. Langley Research Center's �rst implementation of a numerical procedure was
performed by Wilson and Lamkin (ref. 10) as a numerical iterative procedure of the charged
components perturbation series expansion of the Boltzmann transport equation and showed
good agreement with Monte Carlo calculations for modest penetrations to where neutrons play
an important role. The neutron component was added by Lamkin (ref. 11) and closed the gap
between the deterministic code and the Monte Carlo code. The resulting code was fast compared
with the Monte Carlo codes but still lacked e�ciency in generating and operating with large
data arrays which would be solved in the next generation of codes.

The transport of high-energy ions is well adapted to the straight-ahead approximation. In
fact, the usual assumption that secondary ion fragments are produced with the same velocity as
the primary initial ion (ref. 12) is less accurate than the straight-ahead approximation contrary
to intuition (ref. 13). The Boltzmann transport equation for the particle �elds �j(x;E) is given
for the straight-ahead and continuous slowing down approximations as

�
@

@x
�

@

@E
Sj(E)+ �j(E)

�
�j(x;E) =

X
k

Z
1

E
�jk(E;E0) �k(x;E

0) dE 0 (1)

where x is the depth ofpenetration, E is the particle kinetic energy, Sj(E) is the particle stopping
power, �j (E) is the macroscopic interaction cross section, and �jk(E;E

0) is the macroscopic
cross section for particle j of energy E produced as a result of the interaction with particle k

of energy E 0: It has been customary in codes developed at Langley to invert the di�erential
operator and implement it exactly as a marching procedure (ref. 14). The remaining issue has
been to approximate the integral term on the right-hand side of equation (1). The formulation
of the code to approximate heavy fragments was facilitated by assuming that their fragment
velocity is identical to that of the primary ion velocity. This assumption is inadequate for the
description of the coupled nucleonic and light ion components. A computationally compatible
nucleonic transport procedure was developed by Wilson et al. (ref. 15) and agreed well with
exposure quantities evaluated by Monte Carlo transport procedures (ref. 16). The transport
of the nucleonic component was developed by assuming the midpoint energy, within the step
size h, was the appropriate energy to evaluate the integral term. Thus, the residual range of
the proton will reduce by h=2 before the interaction, and the secondary proton residual range
will reduce by h=2 before arriving at the next marching step. Neutrons show no loss in residual
range as their stopping power is zero. This choice was shown to minimize the second-order
corrections to the marching procedure (ref. 17). Although reasonable agreement on exposure
quantities from Monte Carlo calculations was obtained, the resultant neutron ux at the lowest
energies was substantially below the Monte Carlo result in the range of 0:01 to several MeV
and required improvement (ref. 18). Analysis revealed that the problem was in the rescattering
terms in which the number of elastic scattered neutrons was underestimated numerically, which
must be addressed as suggested by Shinn et al. (ref. 18).
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The issue of evaluation of the integral term of the Boltzmann equation for the elastic
scattering was developed in a prior report (ref. 19). In reference 19, a multiple energy
group (multigroup) method based upon a mean value approximation to the integral terms for
transporting evaporation neutrons showed vast improvement in the low-energy neutron spectra.
Now that the elastic scattering events are adequately represented, consider the addition of
improved estimates of nonelastic processes on the neutron transport solution. In the present
paper, nonelastic processes are added to the algorithm developed by Heinbockel, Clowdsley, and
Wilson (ref. 19). The code is then modi�ed to account for the high-energy neutron production
at backward angles. Improved neutron interaction cross sections with less dramatic changes on
the neutron spectrum are introduced.

Formulation of Transport Equations

De�ne the linear di�erential operator as

B [� ] =

�
@

@x
�

@

@E
Sj(E)+ �j(E)

�
�(x;E)

=
@�(x;E)

@x
�

@

@E
[Sj(E) �(x;E)] + �j(E) �(x;E) (2)

and consider the following one-dimensional Boltzmann equation from reference 20

B[�j ] =
X
k

Z
1

0
�jk(E;E

0) �k(x;E
0) dE 0 (3)

where �j is the di�erential ux spectrum for the type j particles, Sj(E) is the stopping power
of the type j particles, and �j(E) is the total macroscopic cross section. The term �jk(E;E

0),
a macroscopic di�erential energy cross section for redistribution of particle type and energy, is
written as

�jk(E;E
0) =

X
�

�� ��(E
0) fjk;�(E;E

0) (4)

where fjk;�(E;E
0) is the spectral redistribution, �� is a microscopic cross section, and �� is the

number density of � type atoms per unit mass of material. The spectral terms are expressed as

fjk;� = feljk;�+ f ejk;� + fdjk;� (5)

where feljk;� represents the elastic redistribution in energy, fejk;� represents evaporation terms,

and fdjk;� represents direct knockout terms. The elastic term is generally limited to a small

energy range near that of the primary particle. The evaporation process dominates over the
low-energy range (E < 25 MeV), and the direct cascading e�ect dominates over the high-energy
range (E > 25 MeV), as illustrated in �gure 1 with data from reference 20.

Equation (3) is then written for j = n as

B [�n ] =
X
k

Z
1

E

X
�

�� ��(E
0)
�
fe lnk;� + fenk;� + fdnk;�

�
�k(x;E

0) dE 0 (6)
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which is expanded to the form

B [�n] =

Z 1

E

X
�

�� ��(E
0)
�
felnn;� + fenn;� + fdnn;�

�
�n(x;E

0) dE0

+
X
k 6=n

Z 1

E

X
�

�� ��(E
0)
�
felnk;� + fenk;� + fdnk;�

�
�k(x;E

0) dE0 (7)

De�ne the integral operators as

I
(k)
el [�] =

Z 1

E

X
�

�� ��(E
0) felnk;� �(x;E 0) dE 0 (8)

I
(k)
e [�] =

Z 1

E

X
�

�� ��(E
0) fenk;� �(x;E 0) dE 0 (9)

I
(k)
d

[�] =

Z 1

E

X
�

�� ��(E
0) fdnk;� �(x;E 0) dE 0 (10)

where k = n denotes coupling to neutron collisions, k = p denotes the neutron source from
proton collisions, and similarly for other ions. When considering only neutrons and protons,
equation (7) can be written in the linear operator form as

B [�n ] = I
(n)
el [�n ] + I

(n)
e [�n ] + I

(n)
d [�n ] + I

(p)
el [�p ] + I

(p)
e [�p ] + I

(p)
d [�p ] (11)

Note that I
(p)
el [�p ] does not contribute to the neutron �eld because protons cannot produce

neutrons through elastic scattering and therefore equation (11), with�n replaced by �, is written
as

B [�] = I
(n)
el [�] + I

(n)
e [�] + I

(n)
d [� ] + I

(p)
e [�p ] + I

(p)
d [�p ] (12)

In reference 19, we assumed the evaporationsource to be isotropic and evaluated the transport in
forward and backwarddirections by using the straight-ahead approximation for elastic scattering
and found improved agreement with Monte Carlo calculations. The �rst step in this study is to
add e�ects of nonelastic events into the transport process.

Assume a solution to equation (12) of the form � = �e + �d , where �e is the solution for
evaporation sources and contributes over the low-energy range and �d is the solution for the
direct knockout sources and contributes mainly over the high-energy range as suggested by
�gure 1. Substitute this assumed solution into equation (12) and �nd

B[�e] + B [�d ] = I
(n)
el [�e] + I

(n)
el [�d ] + I

(n)
e [�e ] + I

(n)
e [�d ]

+ I
(n)
d

[�e] + I
(n)
d

[�d ] + I
(p)
e [�p ] + I

(p)
d

[�p ] (13)

In reference 19, the terms I
(n)
e [�e] and I

(n)
d

[�e] were set to zero to consider only elastic scattering.
This allows estimates of the elastic scattering e�ects on the transport of evaporation neutrons.
In contrast, these terms are retained and they demonstrate nonelastic e�ects on the transport
of evaporated neutrons. This change also allows exibility in further improving the HZETRN
code as shown later in this report. As in reference 19, we assume that �d was calculated by the
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HZETRN program because for the direct cascade neutrons the straight-ahead approximation is
valid. Consequently, �d is a solution of the equation

B [�d ] = I
(n)
el [�d] + I

(n)
d [�d ] + I

(p)
d [�p] (14)

This assumption simpli�es equation (13) to the form

B [�e ] = I
(n)
e l [�e] + I

(n)
e [�e] + I

(n)
d

[�e] + I
(n)
e [�d ] + I

(p)
e [�p] (15)

The elastic and reaction scattering terms are de�ned as

�s;� = �� ��(E
0) fe lnk;�(E;E

0)

�r;� = �� ��(E
0)
h
fenk;�(E;E 0) + fdnk;�(E;E

0)
i

with units of cm2/g-MeV, and for neutrons the stopping power Sj(E) is assumed zero, and
therefore, equation (15) reduces to the integro-di�erential transport equation with source term
as �

@

@x
+ �(E)

�
�e(x;E) =

X
�

Z
1

E

�
�s;�(E;E

0)+ �r;�(E;E
0)
�
�e(x;E

0) dE0+ g(E;x) (16)

Equation (16) represents the steady state evaporation neutron uence �e(x;E) at depth x and
energy E: The various terms in equation (16) are energy E with units of MeV, depth in medium
is x with units of g/cm2, �e(x;E) (in particles/cm2-MeV) is the evaporation neutron uence,

and g(E; x) = I
(n)
e [�d] +I

(p)
e [�p ] (in particles/g-MeV) is a volume source term to be evaluated by

the HZETRN algorithm. Equation (16) is further reduced by considering the neutron energies
before and after an elastic collision. The neutron energy E after an elastic coll ision with a
nucleus of mass number AT�

, initially at rest, is from reference 21

E = E 0

2
64A

2
T�

+ 2AT�
cos� + 1�

AT�
+ 1
�2

3
75 (17)

where E 0 is the neutron energy before the collision, AT�
is the atomic weight of the �th type of

atom being bombarded, and � is the angle of scatter. Note that for forward scattering � = 0,
E = E0 , and for backward scattering � = �, E = E 0�� , where �� is the ratio

�� =

 
AT�

� 1

AT�
+ 1

!2

(18)

which is a constant less than 1. Therefore, change the limits of integration for the elastic
scattering term in equation (16) to [E;E=�� ], which represents the kinetically allowed energies
for the scattered neutron to result in an energy E: Equation (16) then is written as�

@

@x
+ �(E)

�
�e(x;E) =

X
�

Z E=��

E
�s;�(E;E

0) �e(x;E0) dE0

+
X
�

Z
1

E
�r;�(E;E0) �e(x;E

0) dE0+ g(E;x) (19)
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The quantity �(E) has units of cm2/g and is a macroscopic cross section given by

�(E) =
X
�

�� �el� (E) +
X
�

�� �r
�(E) (20)

where �� is the number of atoms per gram, �el
�
(E) is a microscopic elastic cross section in units of

cm2/atom, and �r
�
(E) is the corresponding reaction cross section. Other units for equation (16)

are obtained from the previous units by using the scale factor representing the density of the
material in units of g/cm3.

Mean Value Theorem

Throughout the remaining discussions the following mean value theorem is used for integrals.

Mean Value Theorem: For �(x;E) and f(E) continuous over an interval a � E � b

such that (1) �(x;E) does not change sign over the interval (a; b), (2) �(x;E) is integrable
over the interval (a; b), and (3) f(E) is bounded over the interval (a; b), then there exists
at least one point � such that

Z b

a
f (E) �(x;E) dE = f(�)

Z b

a
�(x;E) dE (a � � � b) (21)

In particle transport this mean value approach is not commonly used. In reactor neutron
calculations, an assumed spectral dependence for �(x;E) is used to approximate the integral
over energy groups. The present use of the mean value theorem is free of this assumption; thus,
more exibility is allowed in the HZETRN code, and the result is a fast and e�cient algorithm
for low-energy neutron analysis.

Multigroup Method

To solve equation (19), partition the energy domain into a set of energies fE0 ; E1 ; : : : ;
Ei; Ei+1 ; : : :g. Consider �rst the case where there is only one value of � which represents neutron
penetration into a single element material and let �e be denoted by �: Equation (19) is integrated
from Ei to Ei+1 with respect to the energy E to obtain

Z Ei+1

Ei

@�(x;E)

@x
dE +

Z Ei+1

Ei

�(E) �(x;E) dE = Is;i + Ir;i + �i (22)

where

Is;i =

Z Ei+1

Ei

Z E=�

E
�s(E;E0) �(x;E0) dE0 dE (23)

Ir;i =

Z Ei+1

Ei

Z 1

E
�r(E;E 0) �(x;E 0) dE 0 dE (24)

�i =

Z Ei+1

Ei

g(E;x) dE (25)

The quantity

�i(x) =

Z Ei+1

Ei

�(x;E) dE (26)
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is associated with the ith energy group (Ei; Ei+1), so that 1
Ei+1�Ei

�i(x) represents an average

uence for the ith energy group. Then equation (22) can be written as an ordinary di�erential
equation in terms of �i(x) as follows. In the �rst term in equation (22), interchange the order
of integration and di�erentiation to obtain

Z Ei+1

Ei

@�(x;E)

@x
dE =

d�i(x)

dx
(27)

By using the previously statedmean value theorem for integrals, the second term in equation (22)
can be expressed as Z Ei+1

Ei

� �(x;E) dE = � �i(x) (28)

where � = �[Ei+�(Ei+1�Ei)] is a mean value associated with some value of � between 0 and 1.

For the term Is;i in equation (23), interchange the order of integration as illustrated in
�gure 2. The integration of equation (23) depends upon the energy partition selected. For
example, �gure 2(b) il lustrates an energy partition where Ei+1 < Ei=�; for this case we can
write equation (23) as

Is;i =

Z Ei+1

E0=Ei

Z E0

E=Ei

Hs dE dE 0 +

Z Ei=�

E0=Ei+1

Z Ei+1

E=Ei

Hs dE dE 0

+

Z Ei+1=�

E0=Ei=�

Z Ei+1

E=�E0

Hs dE dE 0 (29)

where Hs = �s(E;E 0) �(x;E0 ): Figure 2(c) depicts the case where Ei+1 = Ei=� exactly for all i.
In this special case, equation (23) reduces to

Is;i =

Z Ei+1

E0=Ei

Z E0

E=Ei

Hs dE dE0 +

Z Ei+1=�

E0=Ei+1

Z Ei+1

E=�E0

Hs dE dE0 (30)

The selection of an energy partition can lead to two or more distinct energy groups associated
with each interchange in the order of integration. For example, see �gure 3(a).

The evaluation of equation (24) is somewhat more complicated. As an approximation, we
assume there is an energy EN such that �(x; E) can be taken as zero for all E > EN : In this
case, equation (24) can be written as

Ir;i =

Z Ei+1

E0=Ei

Z E0

E=Ei

Hr dE dE 0 +
N�1X
j=i+1

Z Ej+1

Ej

Z Ei+1

Ei

Hr dE dE 0 (31)

where Hr = �r(E;E0 ) �(x;E0): For example see �gure 3(b).

Equations (30) and (31) may then be written for the case where Ei+1 = Ei=� as

Is;i =

Z E�

i

Ei

�s(E;E
�

i ) dE �i(x) dE+

Z Ei+1

�E�

i+1

�s(E;E�

i+1) dE �i+1(x) dE (32)

and

Ir;i =

Z E�

i

Ei

�r(E;E�

i ) dE �i(x) dE+

N�1X
j=i+1

Z Ei+1

Ei

�r(E;E�

j ) dE �j(x) dE (33)
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where E�
i = �1(Ei+1�Ei) and Ei+1 = �2(Ei+2�Ei+1) for some �1 and �2 such that 0 < �1; �2 < 1

by once again using the previously stated mean value theorem. The special partitioning of the
energy as illustrated in �gure 2(c) enables us to obtain from equation (22) a system of ordinary
di�erential equations of the form

d

dx

2
666664

�0
�1
...
...

�N�1

3
777775
=

2
666664

a11 a12 a13 � � � a1N
a22 a23 � � � a2N

a33 � � �
...

�0�
. . .

...
aNN

3
777775

2
666664

�0
�1
...
...

�N�1

3
777775
+

2
666664

�0
�1
...
...

�N�1

3
777775

(34)

where each equation is associated with an energy group. This is where the term multigroup
method originates. In equation (34), the coe�cient matrix has the elements

ai;i =

Z E�
i

Ei

[�s(E;E�
i ) + �r(E;E

�
i )] dE � �(E�

i )

ai;i+1 =

Z Ei+1

�E�
i+1

�s(E;E�
i+1) dE+

Z Ei+2

Ei+1

�r (E;E�
i+1) dE

ai;i+j =

Z Ei+j+1

Ei+j

�r (E;E�
i+j ) dE (j = 2; 3; : : :)

Further assume that for some large value of N , �i equals 0 for all i � N: This assumption
gives rise to the following system of ordinary di�erential equations:

dy

dx
= Ay+ �

subject to the initial conditions y(0) = 0: Here y is the column vector of �i values,
col(�0 ;�1; : : : ;�N�1), the matrixA is anN by N upper triangular matrix, and � is the column
vector col(�0 ; �1; : : : ; �N�1): This system can be solved by using back substitution. In a similar
manner, the integrals in equation (29) and (31) can be evaluated for other kinds of energy par-
titioning, and a system of equations having the same form of equation (34) obtained. How the
elements of the matrix A are calculated will depend upon the elastic scattering as determined
by the type of energy partition. (See, for example, �g. 3(a).)

For our purposes the system of equations (eq. (34)) is used to discuss some of the problems
associated with the multigroup method. Of prime concern is how an energy grid is to be
constructed and how this energy grid controls the size of the matrix in equation (34). Consider
the construction of the energy partition

�
E0 ;

E0

�
;
E0

�2
; : : : ;

E0

�N

�

where E0 = 0:1 MeV, for the selected elements of lithium, aluminum, and lead. Table 1
il lustrates integer values ofN necessary to achieve energies greater than 30 MeV. These values
of N represent the size of the matrix associated with the number of energy groups. The value
E0 = 0:1 MeV, in terms of human exposure, represents a lower bound where lower energies are
not important. The value of 30 MeV represents an upper limit for the evaporation particles and
could be adjusted for other source terms.
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Table 1. Energy Partition Size N

Element � N 0:1=�N

Lithium 0.563 10 31.53
Aluminum 0.862 39 32.75
Lead 0.981 298 30.38

Observe that for energy partitions where Ei+1 < Ei=� the values of N are larger, and
if Ei+1 > Ei=� the values of N are smaller. The cases where Ei+1 > Ei=� give rise to
problems associated with the integration of the elastic scattering terms over the areas A1 and
A2 of �gure 2(d) when the order of integration is interchanged. In this �gure, the area A1 is
associated with the integral de�ning �i , and the area A2 is a remaining area associated with
an integral which is some fraction of the integral de�ning �i+1 which is outside the range of
integration; therefore, some approximationmust be made to de�ne this fractional part. This type
of partitioning produces errors, due to any approximations, but it has the advantage of greatly
reducing the size of the N by N matrix A at the cost of introducing errors into the system of
equations. A more detailed analysis of the energy partition can be found in reference 22.

The case of neutron penetration into a composite material gives rise to the case where there
is more than one value of � in equation (16). In this special case, equation (23) becomes

Is;i =
X
�

Z Ei+1

Ei

Z E=��

E
�s;�(E;E

0) �(x;E 0) dE 0 dE (35)

and equation (24) becomes

Ir;i =
X
�

Z Ei+1

Ei

Z 1

E
�r;�(E;E

0) �(x;E 0) dE 0 dE (36)

In order to avoid the errors introduced when an energy grid is selected such that Ei+1 > Ei=�,
we select � = max(�1; �2; : : : ; ��) and construct the energy partition where Ei+1 = Ei=� so
that Ei+1 � Ei=�� for all �. Obtain a system of di�erential equations having the same upper
triangular form but with elastic scattering contributions for o�-diagonal elements. Observe that
for some arbitrary energy grouping we have, for the element hydrogen, a case where the value
of �� is zero and Ei=�� is therefore in�nite. In this situation, we must integrate over many
energy groups. In this case, the area of integration is similar to that shown in �gure 3(b).
For any composite material, depending upon the selected energy partitioning, some type of
approximations must be made when the order of integration is interchanged in equation (35).
Also the problem of selecting the mean values associated with each of these integrations exists
and now addressed.

Mean Value Determination

A realistic test case was solved analytically and numerically (with and without the multigroup
approximation) for which the mean values were found empirically for several single element
materials (ref. 19). The values determined are

E�
i = Ei+ �1(Ei+1 � Ei)

E�i+1 = Ei+1+ �2(Ei+2� Ei+1)

9



where

�1 =

8><
>:

1 +m11(E � E11) � �1 (E > E11)

1 +m12(E � E11) � �1 (E22 < E < E11)

3 +m13(E � E22) � �1 (E < E22)

and

�2 =

8><
>:

2 + m21(E � E11) (E > E11)

2 + m22(E � E11) (E22 < E < E11)

4 + m23(E � E22) (E < E22)

where
1 = 0:93

2 = 0:90

3 = 0:30

4 = 0:27

m11 = 0:0030485

m12 = 0:2490258

m13 = �0:3937186

E11 = 3:037829

m21 = 0:004355

m22 = 0:249026

m23 = �0 :255920

E22 = 0:5079704

and �1 is 0:0 for lead, 0:02 for aluminum, and 0:075 for lithium. These values of � for the mean
value theorems were determined by trial and error so that the multigroup curves would have the
correct shape and agree with the numerical solution. These selections for the mean values are
not unique.

Application to Evaporation Source in Al-H2O Shield-Target Con�guration

Apply the previous development to an application of the multigroup method associated
with an aluminum-water shield-target con�guration. In particular, consider the case where
the source term g(E;x), in equation (16), represents evaporation neutrons produced per unit
mass per MeV and is speci�ed as a numerical array of values corresponding to various shield-
target thicknesses and energies. The numerical array of values is produced by the radiation code
HZETRN developed by Wilson et al. (ref. 4). This numerical array of source term values is
actually given in the form g(Ei;xj;yk) in units of particles/g-MeV, where yk represents discrete

values for various target thicknesses of water in g/cm2, xj represents discrete values for various

shield thicknesses of aluminum, also in units of g/cm2, and Ei represents discrete energy values
in units of MeV. These discrete source term values are used in the following way. Consider
�rst the solution of equation (16) by the multigroup method for an all-aluminum shield with no
target material, that is, target thickness yk = 0: The HZETRN program was run to simulate
the solar particle event of February 23, 1956, and the source term g(Ei;xj;yk) associated with
an aluminum-water shield-target con�guration was generated for these conditions. Using this
source term, we solved equation (16) by the multigroup method.

For a single shield material with only one value of �, equation (16) becomes

�
@

@x
+ �(E)

�
�(x;E) =

Z E=�

E
�s(E;E

0) �(x;E0) dE0

+

Z
1

E
�r(E;E 0) �(x;E 0) dE 0+ g(E;x) (37)
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where an integration of equation (37) from Ei to Ei+1 produces

Z Ei+1

Ei

@�

@x
dE +

Z Ei+1

Ei

�(E) �(x;E) dE

=

Z Ei+1

Ei

Z E=�

E
�s(E;E

0) �(x;E0) dE0 dE

+

Z Ei+1

Ei

Z
1

E
�r(E;E

0) �(x;E0) dE0 dE+

Z Ei+1

Ei

g(E;x) dE (38)

We de�ne the quantities

�i =

Z Ei+1

Ei

�(x;E) dE

�i =

Z Ei+1

Ei

g(E;x) dE

9>>>>=
>>>>;

(39)

and interchange the order of integration of the double integral terms in equation (38). If the
energy grid is chosen so that Ei+1 = Ei=�, a mean value theorem is applied to obtain the result

d�i

dx
+ ��i =

Z Ei+1

Ei

Z E0

E=Ei

�s(E;E
0) dE �(x;E0) dE0

+

Z Ei+2

Ei+1

Z Ei+1

E=� 1E
0

�s(E;E0) dE �(x;E0) dE0

+

Z Ei+1

Ei

Z E0

E=Ei

�r(E;E
0) dE �(x;E0) dE0

+
N�1X
j=i+1

Z Ej+1

Ej

Z Ei+1

Ei

�r (E;E
0) dE �(x;E0) dE0 + �i (40)

over the energy group Ei < E0 < Ei+1: The �rst double integral in equation (40) represents
integration over the lower triangle illustrated in �gure 2(c). The second double integral in
equation (40) represents integration over the upper triangle il lustrated in �gure 2(c). De�ne

g1(E
0) =

Z E0

E=Ei

�s(E;E
0) dE

g2 (E
0) =

Z Ei+1

E=�1E
0

�s(E;E
0) dE

9>>>>>=
>>>>>;

(41)

and

r1(E
0) =

Z E0

E=Ei

�r (E;E
0) dE

r2i ;m(E0m) =

Z Ei+1

Ei

�r(E;E
0

m) dE

9>>>>>=
>>>>>;

(42)
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then employ another application of a mean value theorem for integrals to write equation (40) in
the form

d�i

dx
+ � �i = g1 [Ei + �1(Ei+1 � Ei)] �i + g2 [Ei+1 + �2(Ei+2� Ei+1)]�i+1

+ r1 [Ei + �1(Ei+1 � Ei)] �i +
N�1X
j=i+1

r2i;j
�
Ej + �2(Ej+1 � Ej )

�
�j + �i (43)

This produces the matrix coe�cients associated with the energy group Ei to Ei+1 so that

ai;i = g1 + r1 � �

ai;i+1 = g2 + r2i ;i+1

ai;i+j = r2i ;i+j

9>>=
>>;

(j = 2;3; : : :) (44)

In this way, the diagonal and o�-diagonal elements of the coe�cient matrix in equation (37) are
calculated.

For a compound target material made up of more than one type of atom, we modify slightly
the solution technique given in reference 19. For a target material comprised of component 1
and component 2, there are two values for �. A value �1 is determined for component 1 and a
value �2 is determined for component 2 of the compound material. In this case, equation (37)
takes on the form

�
@

@x
+ �(E)

�
�(x;E) =

Z E=�1

E
�s1 (E;E

0) �(x;E0) dE0

+

Z E=�2

E
�s2 (E;E 0) �(x;E 0) dE 0+

Z
1

E
�r1(E;E

0) �(x;E 0) dE 0

+

Z
1

E
�r2(E;E 0) �(x;E 0) dE 0+ g(E;x) (45)

where �s1 and �s2 are scattering terms and �r1 and �r2 are reaction terms associated with the
respective components of the compound material. These terms are calculated in the HZETRN
code. We consider two cases. Case I requires that the E=�2 line be above the E=�1 line. In
case II, �2 equals 0 (the hydrogen case), and the limit of integration for the second integral goes
to in�nity. Each case is considered separately.

For case I, we assume that �1 > �2 > 0 and select the energy spacing Ei+1 = Ei=�1. We
then proceed as we did using the single component shield material. Integrate equation (45)
from Ei to Ei+1 and interchange the order of integration on the double integral terms. De�ne

�i =
R Ei+1
Ei

g(E;x) dE and obtain the equation

d�i

dx
+ ��i = H11 +H12 +H21 +H22 +K11 +K12 +K21 + K22 + �i (46)

where H�1 andH�2 represent the elastic scattering caused by collisions with � type atoms and
K�1 andK�2 represent the nonelastic scattering. Note thatH�1 andK�1 are integrals over the
energy range (Ei;Ei+1) for � = 1; 2; and H�2 andK�2 represent integrals over higher energies.
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The integrals H11, H12, K11, and K12 are the easiest to evaluate because of the exact spacing
of the energy partition. These integrals have the forms

H11 =

Z Ei+1

Ei

Z E0

E=Ei

�s1(E;E
0) dE �(x;E 0) dE 0 (47)

H12 =

Z Ei+2

Ei+1

Z Ei+1

E=�1E0
�s1(E;E

0) dE �(x;E0 ) dE0 (48)

and

K11 =

Z Ei+1

Ei

Z E 0

E=Ei

�r1(E;E
0) dE �(x;E 0) dE 0 (49)

K12 =
N�1X
j=i+1

Z Ej+1

Ej

Z Ei+1

Ei

�r1(E;E
0 ) dE �(x;E0) dE0 (50)

Here the �rst subscript represents the material component. A second subscript of 1 represents
integration over the lower triangle in �gure 2(c). A second subscript of 2 represents integration
over upper triangles, l ike �gure 2(c), or higher rectangles, like �gures 3(a) and (b). De�ning the
terms

h1(�)(E
0 ) =

Z E 0

E=Ei

�s;�(E;E
0) dE (� = 1; 2) (51)

h2(1)(E
0 ) =

Z Ei+1

E=�1E 0

�s;1(E;E
0) dE (52)

k1(�)(E
0 ) =

Z E 0

E=Ei

�r;�(E;E
0) dE (� = 1; 2) (53)

k2(�)(E
0 ) =

Z Ei+1

E=Ei

�r;�(E;E
0) dE (� = 1 ; 2) (54)

and using the mean value theorem for integrals we obtain from equations (47) through (50)

H11 = h1(1)[Ei + �1(Ei+1� Ei)]�i

H12 = h2(1)[Ei+1 + �2(Ei+2�Ei+1)]�i+1

K11 = k1(1)[Ei+ � 01(Ei+1�Ei)]�i

K12 =
N�1X
j=i+1

k2(1)[Ej + �02(Ej+1�Ej)]�j

9>>>>>>>>>>=
>>>>>>>>>>;

(55)

where �1,�2 and �01,�
0

2 de�ne intermediate energy values associated with the mean value theorem.

The integrals H21 and H22 are associated with integration limits (E;E=�2) and energy
intervals dictated by the selection of �1 for determining the energy spacings. The integral
H21 is associated with the triangular area shown in �gure 3(a) and takes the form

H21 =

Z Ei+1

Ei

Z E0

E=Ei

�s2(E;E
0) dE �(x;E 0) dE 0 (56)
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The integral H22 is associated with the remaining shaded area shown in �gure 3(a). This
remaining area is made up of a number of rectangles, trapezoids, and triangles. We approximate
the integral over each of these rectangles, trapezoids, and triangles as a fraction �j of the integral
over the whole rectangle with area Aij = (Ei+1� Ei)(Ej+1 �Ej). Integral H22, therefore, takes
the form

H22 =
N�1X
j=i+1

�j

Z Ej+1

Ej

Z Ei+1

Ei

�s2(E;E
0) dE �(x;E 0) dE 0 (57)

where

�j =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

1
�
Ej+1 <

Ei
�2

�

Aij � 0:5(�2Ej+1� Ei)(Ej+1� Ei=�2)
Aij

�
Ej <

Ei
�2

<Ej+1

�

0:5[(Ei+1 � �2Ej+1) + (Ei+1� �2Ej )](Ej+1� Ej)
Aij

�
Ei
�2

< Ej < Ej+1 <
Ei+1
�2

�

0:5(Ei+1=�2 � Ej )(Ei+1 � �2Ej )
Aij

�
Ei
�2

< Ej <
Ei+1
�2

<Ej+1

�

0
�
Ei+1
�2

< Ej

�

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(58)

De�ning the term

h3(2)(E
0) =

Z Ei+1

E=Ei

�s;2(E;E
0) dE (59)

H21 and H22 can be written as

H21 = h1(2)�i

H22 =
N�1X
j=i+1

�jh3(2)�j

9>>>=
>>>;

(60)

Similar to K11 and K12, integrals K21 and K22 are given by

K21 = k1(2)�i

K22 =
N�1X
j=i+1

k2(2)�j

9>>>=
>>>;

(61)

The coe�cients for our system of di�erential equations (eq. (34)) are then given by

ai;i = h1(1) + h1(2) + k1(1) + k1(2)� �

ai;i+1 = h2(1) + �i+1h3(2) + k2(1) + k2(2)

ai;i+2 = �i+2h3(2) + k2(1) + k2(2)

ai;i+3 = �i+3h3(2) + k2(1) + k2(2)

...

9>>>>>>>>>>=
>>>>>>>>>>;

(62)

where evaluation at the appropriate mean energies is implied.
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In case II, the second component is hydrogen which means that �2 = 0; therefore, one of the
limits of integration becomes in�nite. We once again let �1 determine the energy spacing and
integrate equations (47) through (50) over an energy interval (Ei; Ei+1) which is determined by
the E0 = E=�1 line. Using the de�nitions given by equations (39) we integrate equation (45)
over the interval (Ei;Ei+1) and then interchange the order of integration in the resulting double
integrals to obtain

d�i

dx
+ ��i = H�

1 +H�

2 +K�

1 + K�

2 + �i (63)

where

H�

1 =

Z Ei+1

Ei

Z E0

E=Ei

�s1 (E;E
0) dE �(x;E 0) dE 0

+

Z Ei+2

Ei+1

Z Ei+1

E=�1E0

�s1 (E;E
0) dE �(x;E 0) dE 0 (64)

H�

2 =

Z Ei+1

Ei

Z E0

Ei

�s2(E;E
0) dE �(x;E0) dE0

+
NX
j=1

Z Ei+j+1

Ei+j

Z Ei+1

Ei

�s2 (E;E
0) dE �(x;E0) dE0 (65)

K�

� =

Z Ei+1

Ei

Z E0

Ei

�r;�(E;E
0) dE �(x;E 0) dE 0

+
NX
j=1

Z Ei+j+1

Ei+j

�r;�(E;E
0) dE �(x;E 0) dE 0 (66)

where for all N� greater than some integer N > 0, we know that �(x;E) will be taken as zero.
De�ne

h4(E
0) =

Z E0

Ei

�s1 (E;E
0) dE (Ei < E 0 < Ei+1) (67)

h5(E
0) =

Z Ei+1

�1E
0

�s1(E;E
0) dE (Ei+1 < E 0 < Ei+2) (68)

h6(E
0) =

Z E0

Ei

�s2 (E;E
0) dE (Ei < E 0 < Ei+1) (69)

h7(j)(E
0) =

Z Ei+j+1

Ei+j

�s2(E;E
0) dE (Ei+j < E0

j < Ei+j+1) (70)

k3(�)(E
0) =

Z E0

Ei

�r;�(E;E
0) dE (71)

k4(�)(E
0) =

Z Ei+1

Ei

�r;�(E;E
0) dE (72)
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then write the coe�cients associated with the system of di�erential equations as

ai;i = h4 + h6 + k3(1) + k3(2) � �

ai;i+1 = h5 + h7(1) + k4(1) + k4(2)

ai;i+2 = h7(2) + k4(1) + k4(2)

...

9>>>>>>>=
>>>>>>>;

(73)

where evaluation at the appropriate mean energies is implied.

In this way, we generate a system of equations having the triangular form given by
equation (34). We againuse the source terms g(Ei;xj ;yk) obtained from the HZETRN simulation
of the solar particle event of February 23, 1956, associated with an aluminum-water shield-
target con�guration. Note that now we must solve the multigroup equation (34) associated with
equation (40) for the multiple atom target material of water. We consider the cases of discrete
shield thickness x2;x3; :: : and apply the multigroup method to the solution of equation (16)
applied to all target material y > 0. For each xi-value considered, the initial conditions are
obtained from the previous solutions generated where y = 0: This represents the application of
the multigroup method to two di�erent regions: region 1 of all shield material and region 2 of all
target material. We then continue to apply the multigroup method to region 2 for each discrete
value of shield thickness, where the initial conditions on the start of the second region represent
exit conditions from the shield region 1. This provides for continuity of the solutions for the
uence between the two regions.

Reaction E�ects on Evaporated Neutron Fields

In the present calculations, the two-stream bidirectional version of the multigroup method is
always used because of its improved physical description and improved accuracy, especially near
the boundaries of the incident radiation. Here, the assumption is made that half the evaporation
source neutrons move in the forward direction and the other half move in the backward direction.
The multigroup equations are, therefore, solved twice, once for the forward half of the source
term and again for the backward half of the source. We evaluate the radiation �elds for the
solar particle event of February 23, 1956, in an aluminum slab 100 g/cm2 deep with the results
shown in �gure 4 using the computational code of Heinbockel, Clowdsley, and Wilson (ref. 19) in
which the evaporation neutrons are transported under elastic scattering only. Also shown in the
�gure are results obtained with the nonelastic process as described by the present calculation.
A general decrease occurs in the 5 to 25 MeV neutron ux with a corresponding increase below
2 MeV. As one would expect, the more reactive energetic neutrons are removed from the �eld
by the reactions with the appearance of lower energy neutrons as reaction products. Also shown
are results from the MCNPX Monte Carlo code. It is clear that the discrepancies reported by
Clowdsley (ref. 22) are not from neglect of nonelastic processes. Similar results are shown in
�gure 5 for a water target along with Monte Carlo calculations using the LAHET code (ref. 6).
The discrepancies observed in our earlier calculations are clearly due to factors other than e�ects
of reactive processes associated with the transport of evaporation neutrons.

High-Energy Backward Produced Neutrons

Although the two-body interactions of nucleons are limited to the forward scattering, the
multiple scattering of nucleons in nuclei can produce a nucleon in the backward direction after
several scattering events. In addition the Fermi motion within the nucleus will enhance this
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e�ect. The angular distribution of nucleons from nuclear reactions was estimated by Ranft
(ref. 23) to be given by the approximate function

g(At;E;�) =

8>>><
>>>:

N exp

�
��2

�

�
(0 < � < �=2)

N exp

�
��2

4�

�
(Otherwise)

9>>>=
>>>;

(74)

where � = (120 + 0:36AT )=E, with E the secondary particle energy in MeV, AT the atomic
weight of the struck nucleus, andN a normalization constant. The fraction of neutrons produced
in the forward direction is

Ffor = 2�

Z
for

g(AT ;E;�) d(cos �) (75)

The corresponding backward-produced neutron fraction is

Fbac = 1� Ffor (76)

The approximate isotropic component of the interaction can be taken as

Fiso = 2Fbac (77)

In earlier development of the multigroup method, we assumed that the direct reaction products
would mainly be of high energy and in the forward direction and, therefore, adequately solved
by the HZETRN code. The assumed isotropic evaporation source was then treated with
the multigroup method by assuming half of the evaporation source was propagating in the
forward direction and the second half in the backward direction. In similar fashion, we replace
evaporation and direct reaction spectra in the code as follows:

f e(E;E0) ! Fiso[f
e(E;E0)+ fd(E;E0)]

fd(E;E0) ! FHZETRN[f
e(E;E 0) + fd(E;E 0)]

9=
; (78)

where FHZETRN = 1 � Fiso : These replacements (eqs. (78)) were made in the new version
of HZETRN/multigroup code which is now only a minor modi�cation. The terms on the
right-hand side of equations (78) are shown in �gure 6 and should be compared with �gure 1.
The importance of the reactive channels are accentuated because of the higher energies of the
backward propagating neutrons.

Results for RanftModi�ed Source

We have reevaluated the neutron �elds in aluminum and water for the solar particle event
of February 23, 1956, with the angular dependence of Ranft and the separations into HZETRN
and isotropic components. The results are shown in �gures 7 and 8 along with MCNPX (ref. 22)
and LAHET (ref. 6) derived Monte Carlo results. The addition of the high-energy backward
component is essential in reaching agreement with the MCNPX and LAHET codes. It is clear
that the discrepancies observed by Shinn et al. (ref. 16) in the 50 to 200 MeV region are due
to the energetic neutrons produced in the backward direction as reasonably described by the
Ranft formula. The Ranft formula appears to overestimate the backward component for oxygen
because agreement is improved for the omnidirectional ux at larger depths although forward
and backward components may be somewhat incorrect. Quite satisfactory agreement is obtained
at the largest depths. Still many of the cross sections in the HZETRN code are crude and a
continued e�ort to improve them is expected to further enhance the calculated results.
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Improved Cross Sections

A program of improved cross sections has been in progress for several years. Greatest
attention has been given to fragment events for heavy ionswhich have been signi�cantly improved
(refs. 24 and 25). Recent years of research have resulted in improved absorption cross sections
(ref. 26) and improved production cross sections for the present study using the LAHET code
with results in table 2. The e�ects of these new cross sections are shown in �gure 9.

Table 2. Number of Nucleons Produced in Nuclear Collisions With Aluminum Atoms

Cascade Nucleons Evaporation Nucleons

Energy, MeV n! p n! n p! n p! p n! p n! n p! n p! p

25 0.13 0.26 0.09 0.24 0.38 1.13 0.43 0.96
200 0.73 1.26 0.80 1.18 0.75 1.22 0.90 1.11
400 0.91 1.58 0.99 1.49 0.87 1.29 1.04 1.13
1000 1.48 2.12 1.59 2.02 1.30 1.69 1.55 1.44
2000 1.97 2.58 2.11 2.45 1.44 1.83 1.70 1.58
3000 2.32 2.92 2.49 2.76 1.48 1.86 1.72 1.62

Concluding remarks

The methods described herein greatly improve the HZETRN computer code's neutron
transport predictions. To summarize, a bidirectional multigroup solution of the straight-ahead
Boltzmann equation for elastic and nonelastic transport of low-energy evaporation neutrons has
been implemented. The resulting computer code was added to the existing HZETRN computer
code which was developed at the Langley Research Center. With the new modi�ed code, various
simulations were conducted to test its accuracy. The Monte Carlo codes LAHET and MCNPX
were used as benchmarks of accuracy. The modi�ed code with and without the inclusion of
nonelastic scattering processes for the evaporation neutrons is compared with these benchmarks.
The neutron uences are calculated at depths in aluminum of 1, 10, and 30 g/cm2. These depths
were selected because they represent typical values of shielding associated with the constantly
changing space environment encountered by astronauts. The shield material of aluminum is
typical because of weight considerations in space. The neutron uences are calculated at
depths of 1, 10, and 30 g/cm2 in water. Water is used to model human tissue. Including
nonelastic scattering processes in the calculation of the transport of low-energy evaporation
neutrons slightly improves the prediction of neutron uence at low energies, but the prediction
of neutron uence at slightly higher energies, around 10 MeV, is decreased by this change.

The HZETRN code underestimates the uence of neutrons in the range of 5 to 200 MeV. In
an e�ort to �x this problem, a formula by Ranft was used to estimate the number of isotropic
neutrons at each energy. Using the bidirectional multigroup method to propagate all the isotropic
neutrons greatly improved the neutron uence predictions.

The addition of improved production cross sections to the code showed only modest improve-
ment to the predicted neutron uence. In the future, more accurate absorption cross sections
will be added to the code, but this is expected to also have only a modest e�ect.
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bidirectional multigroup method used to transport evaporation neutrons.
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Figure 5. Energy spectra of neutron uence in water calculated by HZETRN program with
bidirectional multigroup method used to transport evaporation neutrons.
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Figure 7. Energy spectra of neutron uence in aluminum calculated by HZETRN program with
bidirectional multigroup method used to transport all isotropic neutrons.
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Figure 8. Energy spectra of neutron uence in water calculated by HZETRN program with
bidirectional multigroup method used to transport all isotropic neutrons.
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Figure 9. Energy spectra of neutron uence in aluminum calculated with new cross sections.
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